Sains Malaysiana 54(4)(2025):
1053-1062
http://doi.org/10.17576/jsm-2025-5404-07
A Novel Synthesis of Anti-Cancer
Drug Gefitinib from 6,7-Dimethoxy-3H-Quinazolin-4-One
(Suatu Sintesis
Baharu Ubat Anti-Kanser Gefitinib daripada 6,7-Dimetoksi-3H-Kuinazolin-4-One)
PRIO SANTOSO1,2,
ADE DANOVA1, ELVIRA HERMAWATI1, DESSY NATALIA1 & ANITA ALNI1,*
1Chemistry
Department, Faculty of Mathematics and Natural Sciences, Institut Teknologi
Bandung, Jl. Ganesa 10, Bandung, Indonesia
2Chemistry
Department, Faculty of Sciences, Institut Teknologi Sumatera, Jl. Terusan
Ryacudu, South Lampung, Indonesia
Diserahkan:
25 Julai 2024/ Diterima: 17 Disember 2024
Abstract
A
novel synthesis of the anticancer drug gefitinib (Iressa) through novel alternative
pathway has been successfully carried out. The synthesis was performed using 6,7-dimethoxy-3H-quinazolin-4-one
as the starting material through four reaction stages: Chlorination, nucleophilic
aromatic substitution, demethylation, and Williamson etherification to produce
gefitinib. The chlorination of 6,7-dimethoxy-3H-quinazolin-4-one as the
first key step in this synthesis followed by aromatic substitution were effective
to produce the target product with high yield (98% for two steps). In addition,
synthesis of gefitinib from this precursor omits the necessity for functional
group protection and deprotection. Purification was carried out using
crystallization and radial chromatography. The structural analysis of the
resulting compound was performed using FTIR, 1H-NMR, 13C-NMR,
and mass spectrometry. The purity of the resulting compounds was measured using
HPLC and melting point measurements (195-197 °C). The overall yield obtained
through this pathway was 21%.
Keywords:
Anticancer; gefitinib; Iressa; synthesis; 4-chloroquinazoline
Abstrak
Suatu
sintesis baharu ubat antikanser gefitinib (Iressa) melalui laluan alternatif baharu
telah berjaya dijalankan. Sintesis dilakukan menggunakan 6,7-dimetoksi-3H-kuinazolin-4-one
sebagai bahan permulaan melalui empat peringkat tindak balas: pengklorinan,
penggantian aromatik nukleofilik, demetilasi dan eterifikasi Williamson untuk
menghasilkan gefitinib. Pengklorinan 6,7-dimetoksi-3H-kuinazolin-4-one sebagai
langkah utama pertama dalam sintesis ini diikuti dengan penggantian aromatik
adalah berkesan untuk menghasilkan produk sasaran dengan hasil yang tinggi (98%
untuk dua langkah). Di samping itu, sintesis gefitinib daripada prekursor ini
menghilangkan keperluan untuk perlindungan dan penyahlindungan kumpulan
berfungsi. Pemurnian dijalankan menggunakan penghabluran dan kromatografi
jejari. Analisis struktur sebatian yang terhasil dilakukan menggunakan FTIR,
1H-NMR, 13C-NMR dan spektrometri jisim. Ketulenan sebatian yang terhasil diukur
menggunakan HPLC dan ukuran takat lebur (195-197 °C). Hasil keseluruhan yang
diperoleh melalui laluan ini ialah 21%.
Kata
kunci: Antikanser; gefitinib; Iressa; sintesis; 4-klorokuinazolin
RUJUKAN
Bian, W., Wang, M., Ahsan, B.,
Lin, S., Ren, Z., Huang, J.A. & Wang, J. 2018. Gefitinib-loaded
nanoparticles with folic acid-modified dextran surface prepared by flash
nanoprecipitation. Chemistry Letters 47(11): 1405-1408.
Boobalan, R., Liu, K.K., Chao, J.I.
& Chen, C. 2017. Synthesis and biological assay of erlotinib analogues and
BSA-conjugated erlotinib analogue. Bioorganic and Medicinal Chemistry
Letters 27(8): 1784-1788.
Bray, F., Laversanne, M., Sung, H.,
Ferlay, J., Siegel, R.L., Soerjomataram, I. & Jemal, A. 2024. Global cancer
statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA: A Cancer Journal for Clinicians 74(3):
229-263.
Chandregowda, V., Rao, G.V. & Reddy,
G.C. 2007a. Convergent approach for commercial synthesis of gefitinib and
erlotinib. Organic Process Research and Development 11(5): 813-816.
Chandregowda, V., Venkateswara Rao, G.
& Chandrasekara Reddy, G. 2007b. One-pot conversion of 2-nitrobenzonitriles
to quinazolin-4(3H)-ones and synthesis of gefitinib and erlotinib
hydrochloride. Heterocycles 71(1): 39-48.
Da Cunha Santos, G., Shepherd, F.A.
& Tsao, M.S. 2011. EGFR mutations and lung cancer. Annual Review of
Pathology: Mechanisms of Disease 6: 49-69.
Erickson, G., Guo, J., McClure, M.,
Mitchell, M., Salaun, M.C. & Whitehead, A. 2014. Synthesis of Lapatinib via
direct regioselective arylation of furfural. Tetrahedron Letters 55(43):
6007-6010.
Field, R.W. & Withers, B.L. 2012. Occupational
and environmental causes of lung cancer. Clinics in Chest Medicine 33(4):
681-703.
Firdaus, Soekamto, N.H., Seniwati,
Firdausiah, S., Rasyid, H., Bahja & Islam, M.F. 2022. Phenethyl p-coumarate
and N-phenethyl-p-coumaramide: Synthesis, characterization, docking studies and
anticancer activity through P388 cell. Sains Malaysiana 51(4): 1085-1097.
Fujii, N., Irie, H. & Yajima, H.
1977. Regioselective cleavage of aromatic methyl ethers by methanesulphonic
acid in the presence of methionine. Journal of the Chemical Society, Perkin
Transactions 1 20: 2288-2289.
Gibson, K.H. 1998. US Patent 5770599.
Hamed, S.A., Thaker, A., Rudaini, B.M.,
Naeem, H.S., Bakar, M.A.B.U. & Hasbullah, S.A. 2024. Synthesis and characterization
of hexahydropyrimidines and their new derivatives. Sains Malaysiana 53(4): 839-850.
Huang, L., Jiang, S. & Shi, Y. 2020.
Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001-2020). Journal of Hematology and Oncology 13(1): 1-23.
Kovacevic, T., Mesic, M., Avdagic, A.
& Zegarac, M. 2018. An alternative synthesis of the non-small cell lung
carcinoma drug afatinib. Tetrahedron Letters 59(47): 4180-4182.
Mao, L., Sun, G., Zhao, J., Xu, G.,
Yuan, M. & Li, Y.M. 2020. Design, synthesis and antitumor activity of
icotinib derivatives. Bioorganic Chemistry 105(3025): 104421.
Maskrey, T.S., Kristufek, T., Laporte,
M.G., Nyalapatla, P.R. & Wipf, P. 2019. A new synthesis of gefitinib. Synlett 30(4): 471-476.
Ming, D.L., You, G.Z. & Ji, M. 2007.
Synthesis of gefitinib from methyl 3-hydroxy-4-methoxy-benzoate. Molecules 12(3): 673-678.
Mitsudomi, T., Morita, S., Yatabe,
Y., Negoro, S., Okamoto, I., Tsurutani, J., Seto, T.,
Satouchi, M., Tada, H., Hirashima, T., Asami, K., Katakami, N., Takada, M.,
Yoshioka, H., Shibata, K., Kudoh, S., Shimizu, E., Saito, H., Toyooka, S.,
Nakagawa, K. & Fukuoka, M.; West Japan Oncology Group. 2010. Gefitinib versus cisplatin
plus docetaxel in patients with non-small-cell lung cancer harbouring mutations
of the epidermal growth factor receptor (WJTOG3405): An open label, randomised
phase 3 trial. The Lancet Oncology 11(2): 121-128.
Mok, T.S., Wu, Y.L., Thongprasert, S., Yang, C.H., Chu, D.T.,
Saijo, N., Sunpaweravong, P., Han, B., Margono, B., Ichinose, Y., Nishiwaki,
Y., Ohe, Y., Yang, J.J., Chewaskulyong, B., Jiang, H., Duffield, E.L., Watkins,
C.L., Armour, A.A. & Fukuoka, M. 2009. Gefitinib or carboplatin–paclitaxel in pulmonary
adenocarcinoma. The New England Journal of Medicine 361(10): 947-957.
Nandiyanto, A.B.D., Oktiani, R.
& Ragadhita, R. 2019. How to read and interpret
ftir spectroscope of organic material. Indonesian Journal of Science and
Technology 4(1): 97-118.
Paz-Ares, L., Tan, E. H., O’Byrne, K.,
Zhang, L., Hirsh, V., Boyer, M., Yang, J.C., Mok, T., Lee, K.H., Lu,
S., Shi, Y., Lee, D.H., Laskin, J., Kim, D.W., Laurie, S.A., Kölbeck, K., Fan,
J., Dodd, N., Märten, A. & Park, K. 2017. Afatinib versus gefitinib in patients with EGFR
mutation-positive advanced non-small-cell lung cancer: Overall survival data
from the phase IIb LUX-Lung 7 trial. Annals of Oncology 28(2): 270-277.
Rahman, A.F.M.M., Korashy, H.M. &
Kassem, M.G. 2014. Gefitinib. In Profiles of Drug Substances, Excipients and
Related Methodology. Massachusetts: Academic Press. 39: 239-264.
Rao, D.R., Kankan, R.N. & Pathi,
S.L. 2013. US Patent 8350029 B2.
Rosa, R., Pini, M., Cappucci, G.M.
& Ferrari, A.M. 2022. Principles and indicators for
assessing the environmental dimension of sustainability within green and
sustainable chemistry. Current Opinion in Green and Sustainable Chemistry 37: 100654.
Sheldon, R.A. 2012. Fundamentals of
green chemistry: Efficiency in reaction design. Chemical Society Reviews 41(4): 1437-1451.
Telliez, A., Desroses, M., Pommery, N.,
Briand, O., Farce, A., Laconde, G., Lemoine, A., Depreux, P. & Hénichart,
J.P. 2007. Derivatives of Iressa, a specific epidermal growth factor receptor
inhibitor, are powerful apoptosis inducers in PC3 prostatic cancer cells. ChemMedChem 2(3): 318-332.
Thandra, K.C., Barsouk, A., Saginala,
K., Aluru, J.S. & Barsouk, A. 2021. Epidemiology of lung cancer. Contemporary
Oncology 25(1): 45-52.
Waiker, D.K., Karthikeyan, C.,
Poongavanam, V., Kongsted, J., Lozach, O., Meijer, L. & Trivedi, P. 2014.
Synthesis, biological evaluation and molecular modelling studies of
4-anilinoquinazoline derivatives as protein kinase inhibitors. Bioorganic
and Medicinal Chemistry 22(6): 1909-1915.
Wang, S., Yuan, X.H., Wang, S.Q., Zhao,
W., Chen, X.B. & Yu, B. 2021. FDA-approved pyrimidine-fused bicyclic
heterocycles for cancer therapy: Synthesis and clinical application. European
Journal of Medicinal Chemistry 214: 113218.
Wei, H., Duan, Y., Gou, W., Cui, J.,
Ning, H., Li, D., Qin, Y., Liu, Q. & Li, Y. 2019. Design, synthesis and
biological evaluation of novel 4-anilinoquinazoline derivatives as
hypoxia-selective EGFR and VEGFR-2 dual inhibitors. European Journal of
Medicinal Chemistry 181: 111552.
Wu, Y.L., Cheng, Y., Zhou, X., Lee,
K.H., Nakagawa, K., Niho, S., Tsuji, F., Linke, R., Rosell, R., Corral, J., Migliorino, M.R.,
Pluzanski, A., Sbar, E.I., Wang, T., White, J.L., Nadanaciva, S., Sandin, R.
& Mok, T.S. 2017.
Dacomitinib versus gefitinib as first-line treatment for patients with
EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): A randomised,
open-label, phase 3 trial. The Lancet Oncology 18(11): 1454-1466.
Yadav, R.R., Guru, S.K., Joshi, P.,
Mahajan, G., Mintoo, M.J., Kumar, V., Bharate, S.S., Mondhe, D.M.,
Vishwakarma, R.A., Bhushan, S. & Bharate, S.B. 2016. 6-Aryl substituted 4-(4-cyanomethyl) phenylamino
quinazolines as a new class of isoform-selective PI3K-alpha inhibitors. European
Journal of Medicinal Chemistry 122: 731-743.
*Pengarang
untuk surat-menyurat; email: alni@itb.ac.id