Sains Malaysiana 54(4)(2025): 1053-1062

http://doi.org/10.17576/jsm-2025-5404-07

 

A Novel Synthesis of Anti-Cancer Drug Gefitinib from 6,7-Dimethoxy-3H-Quinazolin-4-One

(Suatu Sintesis Baharu Ubat Anti-Kanser Gefitinib daripada 6,7-Dimetoksi-3H-Kuinazolin-4-One)

 

PRIO SANTOSO1,2, ADE DANOVA1, ELVIRA HERMAWATI1, DESSY NATALIA1 & ANITA ALNI1,*

 

1Chemistry Department, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung, Indonesia

2Chemistry Department, Faculty of Sciences, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, South Lampung, Indonesia

 

Diserahkan: 25 Julai 2024/ Diterima: 17 Disember 2024

 

Abstract

A novel synthesis of the anticancer drug gefitinib (Iressa) through novel alternative pathway has been successfully carried out. The synthesis was performed using 6,7-dimethoxy-3H-quinazolin-4-one as the starting material through four reaction stages: Chlorination, nucleophilic aromatic substitution, demethylation, and Williamson etherification to produce gefitinib. The chlorination of 6,7-dimethoxy-3H-quinazolin-4-one as the first key step in this synthesis followed by aromatic substitution were effective to produce the target product with high yield (98% for two steps). In addition, synthesis of gefitinib from this precursor omits the necessity for functional group protection and deprotection. Purification was carried out using crystallization and radial chromatography. The structural analysis of the resulting compound was performed using FTIR, 1H-NMR, 13C-NMR, and mass spectrometry. The purity of the resulting compounds was measured using HPLC and melting point measurements (195-197 °C). The overall yield obtained through this pathway was 21%.

Keywords: Anticancer; gefitinib; Iressa; synthesis; 4-chloroquinazoline

Abstrak

Suatu sintesis baharu ubat antikanser gefitinib (Iressa) melalui laluan alternatif baharu telah berjaya dijalankan. Sintesis dilakukan menggunakan 6,7-dimetoksi-3H-kuinazolin-4-one sebagai bahan permulaan melalui empat peringkat tindak balas: pengklorinan, penggantian aromatik nukleofilik, demetilasi dan eterifikasi Williamson untuk menghasilkan gefitinib. Pengklorinan 6,7-dimetoksi-3H-kuinazolin-4-one sebagai langkah utama pertama dalam sintesis ini diikuti dengan penggantian aromatik adalah berkesan untuk menghasilkan produk sasaran dengan hasil yang tinggi (98% untuk dua langkah). Di samping itu, sintesis gefitinib daripada prekursor ini menghilangkan keperluan untuk perlindungan dan penyahlindungan kumpulan berfungsi. Pemurnian dijalankan menggunakan penghabluran dan kromatografi jejari. Analisis struktur sebatian yang terhasil dilakukan menggunakan FTIR, 1H-NMR, 13C-NMR dan spektrometri jisim. Ketulenan sebatian yang terhasil diukur menggunakan HPLC dan ukuran takat lebur (195-197 °C). Hasil keseluruhan yang diperoleh melalui laluan ini ialah 21%.

Kata kunci: Antikanser; gefitinib; Iressa; sintesis; 4-klorokuinazolin

 

RUJUKAN

Bian, W., Wang, M., Ahsan, B., Lin, S., Ren, Z., Huang, J.A. & Wang, J. 2018. Gefitinib-loaded nanoparticles with folic acid-modified dextran surface prepared by flash nanoprecipitation. Chemistry Letters 47(11): 1405-1408.

Boobalan, R., Liu, K.K., Chao, J.I. & Chen, C. 2017. Synthesis and biological assay of erlotinib analogues and BSA-conjugated erlotinib analogue. Bioorganic and Medicinal Chemistry Letters 27(8): 1784-1788.

Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I. & Jemal, A. 2024. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 74(3): 229-263.

Chandregowda, V., Rao, G.V. & Reddy, G.C. 2007a. Convergent approach for commercial synthesis of gefitinib and erlotinib. Organic Process Research and Development 11(5): 813-816.

Chandregowda, V., Venkateswara Rao, G. & Chandrasekara Reddy, G. 2007b. One-pot conversion of 2-nitrobenzonitriles to quinazolin-4(3H)-ones and synthesis of gefitinib and erlotinib hydrochloride. Heterocycles 71(1): 39-48.

Da Cunha Santos, G., Shepherd, F.A. & Tsao, M.S. 2011. EGFR mutations and lung cancer. Annual Review of Pathology: Mechanisms of Disease 6: 49-69.

Erickson, G., Guo, J., McClure, M., Mitchell, M., Salaun, M.C. & Whitehead, A. 2014. Synthesis of Lapatinib via direct regioselective arylation of furfural. Tetrahedron Letters 55(43): 6007-6010.

Field, R.W. & Withers, B.L. 2012. Occupational and environmental causes of lung cancer. Clinics in Chest Medicine 33(4): 681-703.

Firdaus, Soekamto, N.H., Seniwati, Firdausiah, S., Rasyid, H., Bahja & Islam, M.F. 2022. Phenethyl p-coumarate and N-phenethyl-p-coumaramide: Synthesis, characterization, docking studies and anticancer activity through P388 cell. Sains Malaysiana 51(4):  1085-1097.

Fujii, N., Irie, H. & Yajima, H. 1977. Regioselective cleavage of aromatic methyl ethers by methanesulphonic acid in the presence of methionine. Journal of the Chemical Society, Perkin Transactions 1 20: 2288-2289.

Gibson, K.H. 1998. US Patent 5770599.

Hamed, S.A., Thaker, A., Rudaini, B.M., Naeem, H.S., Bakar, M.A.B.U. & Hasbullah, S.A. 2024. Synthesis and characterization of hexahydropyrimidines and their new derivatives. Sains Malaysiana 53(4): 839-850.

Huang, L., Jiang, S. & Shi, Y. 2020. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001-2020). Journal of Hematology and Oncology 13(1): 1-23.

Kovacevic, T., Mesic, M., Avdagic, A. & Zegarac, M. 2018. An alternative synthesis of the non-small cell lung carcinoma drug afatinib. Tetrahedron Letters 59(47): 4180-4182.

Mao, L., Sun, G., Zhao, J., Xu, G., Yuan, M. & Li, Y.M. 2020. Design, synthesis and antitumor activity of icotinib derivatives. Bioorganic Chemistry 105(3025): 104421.

Maskrey, T.S., Kristufek, T., Laporte, M.G., Nyalapatla, P.R. & Wipf, P. 2019. A new synthesis of gefitinib. Synlett 30(4): 471-476.

Ming, D.L., You, G.Z. & Ji, M. 2007. Synthesis of gefitinib from methyl 3-hydroxy-4-methoxy-benzoate. Molecules 12(3): 673-678.

Mitsudomi, T., Morita, S., Yatabe, Y., Negoro, S., Okamoto, I., Tsurutani, J., Seto, T., Satouchi, M., Tada, H., Hirashima, T., Asami, K., Katakami, N., Takada, M., Yoshioka, H., Shibata, K., Kudoh, S., Shimizu, E., Saito, H., Toyooka, S., Nakagawa, K. & Fukuoka, M.; West Japan Oncology Group. 2010. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): An open label, randomised phase 3 trial. The Lancet Oncology 11(2): 121-128.

Mok, T.S., Wu, Y.L., Thongprasert, S., Yang, C.H., Chu, D.T., Saijo, N., Sunpaweravong, P., Han, B., Margono, B., Ichinose, Y., Nishiwaki, Y., Ohe, Y., Yang, J.J., Chewaskulyong, B., Jiang, H., Duffield, E.L., Watkins, C.L., Armour, A.A. & Fukuoka, M. 2009. Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. The New England Journal of Medicine 361(10): 947-957.

Nandiyanto, A.B.D., Oktiani, R. & Ragadhita, R. 2019. How to read and interpret ftir spectroscope of organic material. Indonesian Journal of Science and Technology 4(1): 97-118.

Paz-Ares, L., Tan, E. H., O’Byrne, K., Zhang, L., Hirsh, V., Boyer, M., Yang, J.C., Mok, T., Lee, K.H., Lu, S., Shi, Y., Lee, D.H., Laskin, J., Kim, D.W., Laurie, S.A., Kölbeck, K., Fan, J., Dodd, N., Märten, A. & Park, K. 2017. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: Overall survival data from the phase IIb LUX-Lung 7 trial. Annals of Oncology 28(2): 270-277.

Rahman, A.F.M.M., Korashy, H.M. & Kassem, M.G. 2014. Gefitinib. In Profiles of Drug Substances, Excipients and Related Methodology. Massachusetts: Academic Press. 39: 239-264.

Rao, D.R., Kankan, R.N. & Pathi, S.L. 2013. US Patent 8350029 B2.

Rosa, R., Pini, M., Cappucci, G.M. & Ferrari, A.M. 2022. Principles and indicators for assessing the environmental dimension of sustainability within green and sustainable chemistry. Current Opinion in Green and Sustainable Chemistry 37: 100654.

Sheldon, R.A. 2012. Fundamentals of green chemistry: Efficiency in reaction design. Chemical Society Reviews 41(4): 1437-1451.

Telliez, A., Desroses, M., Pommery, N., Briand, O., Farce, A., Laconde, G., Lemoine, A., Depreux, P. & Hénichart, J.P. 2007. Derivatives of Iressa, a specific epidermal growth factor receptor inhibitor, are powerful apoptosis inducers in PC3 prostatic cancer cells. ChemMedChem 2(3): 318-332.

Thandra, K.C., Barsouk, A., Saginala, K., Aluru, J.S. & Barsouk, A. 2021. Epidemiology of lung cancer. Contemporary Oncology 25(1): 45-52.

Waiker, D.K., Karthikeyan, C., Poongavanam, V., Kongsted, J., Lozach, O., Meijer, L. & Trivedi, P. 2014. Synthesis, biological evaluation and molecular modelling studies of 4-anilinoquinazoline derivatives as protein kinase inhibitors. Bioorganic and Medicinal Chemistry 22(6): 1909-1915.

Wang, S., Yuan, X.H., Wang, S.Q., Zhao, W., Chen, X.B. & Yu, B. 2021. FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application. European Journal of Medicinal Chemistry 214: 113218.

Wei, H., Duan, Y., Gou, W., Cui, J., Ning, H., Li, D., Qin, Y., Liu, Q. & Li, Y. 2019. Design, synthesis and biological evaluation of novel 4-anilinoquinazoline derivatives as hypoxia-selective EGFR and VEGFR-2 dual inhibitors. European Journal of Medicinal Chemistry 181: 111552.

Wu, Y.L., Cheng, Y., Zhou, X., Lee, K.H., Nakagawa, K., Niho, S., Tsuji, F., Linke, R., Rosell, R., Corral, J., Migliorino, M.R., Pluzanski, A., Sbar, E.I., Wang, T., White, J.L., Nadanaciva, S., Sandin, R. & Mok, T.S. 2017. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): A randomised, open-label, phase 3 trial. The Lancet Oncology 18(11): 1454-1466.

Yadav, R.R., Guru, S.K., Joshi, P., Mahajan, G., Mintoo, M.J., Kumar, V., Bharate, S.S., Mondhe, D.M., Vishwakarma, R.A., Bhushan, S. & Bharate, S.B. 2016. 6-Aryl substituted 4-(4-cyanomethyl) phenylamino quinazolines as a new class of isoform-selective PI3K-alpha inhibitors. European Journal of Medicinal Chemistry 122: 731-743.

 

*Pengarang untuk surat-menyurat; email: alni@itb.ac.id

 

 

 

 

 

 

 

           

sebelumnya